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This paper is concernedwith the effect of slip velocity on the steady two-dimensional flow of amicropolar fluid near

a stagnation point at a stretching plate in the presence of a uniform transverse magnetic field and thermal radiation

with the bottom surface of the plate is heated by convection from a hot fluid. The governing system of partial

differential equations describing the problem is converted into a system of nonlinear ordinary differential equations

using similarity transformation, and then solvednumerically using theChebyshev spectralmethod.Numerical results

for the velocity, microrotation, and temperature are shown graphically and discussed for various values of different

parameters. Moreover, the numerical values of the local skin-friction coefficient and the local Nusselt number for

these parameters are also tabulated and discussed.

I. Introduction

M ICROPOLAR fluids are those with a microstructure
belonging to a class of fluids with nonsymmetrical stress

tensor. The theory ofmicropolar fluids, first proposed by Eringen [1],
who is capable of describing such fluids, and later [2] generalized the
micropolar-fluid theory to include the thermal effects. This theory is
expected to provide a mathematical model for non-Newtonian fluid
behavior, which can be used to analyze the behavior of exotic
lubricants, liquid crystals, polymeric fluids, colloidal fluids, real
fluids with suspensions, and animal blood. Extensive reviews of this
theory and its applications can be found in the review articles by
Ariman et al. [3,4], and the books by Lukaszewicz [5] and Eringen
[6]. Several researchers have studied the boundary-layer flow and
heat transfer on a moving surface with and without a magnetic field
under different boundary conditions [7–11].
For some industrial applications such as glass production and

furnace design, nuclear-power plants, gas turbines, and in space-
technology applications such as cosmical flight aerodynamic rocket-
propulsion systems, plasma physics, and spacecraft-reentry
aerothermodynamics that operate at higher temperature, radiation
effects can be quite significant. In view of this, the effects of radiation
on the flow and heat transfer of amicropolar fluid past a continuously
moving plate have been studied by many authors [12–17].
Stagnation-point flow has attractedmany investigations during the

past several decades because of its wide applications in many
practical problems like cooling of electronic devices by fans, cooling
of nuclear reactors, and many hydrodynamic processes. Hiemenz
[18] was the first one who studied the two-dimensional (2-D) flow of
fluid near a stagnation point. This problemwas extended numerically
by Schlichting and Bussman [19], and analytically by Ariel [20] to
include the effect of suction. Peddieson and McNitt [21] derived the
boundary-layer equations for a 2-D micropolar flow at a stagnation
point on a stationary wall. The stagnation-point flows toward a
surface that is stretched have been considered, for example, by Nazar
et al. [22] and recently by Ishak et al. [23]. Ramadan and Al-Nimr
[24] numerically studied the impulsively started convection in planar
and axisymmetric stagnation-point flow.

In the aforementioned studies, the effect of slip condition has not
been taken into consideration, while the study of magnetomicropolar
fluid flows in the slip-flow regimes with heat transfer has important
engineering applications, such as in power generators, refrigeration
coils, transmission lines, electric transformers, and heating elements.
From the kinetic theory of gases of slightly rarefied flows, the no-slip
boundary condition is replaced by a slip boundary condition, and for
a prescribed surface temperature, a thermal-jump condition will
occur [25].Kiwan andAl-Nimr studied the effects of velocity slip and
temperature-jump condition on 1) the convection heat transfer in-
duced by a stretching flat plate [26], and 2) stagnation-point flow
toward a stationary flat plate [27]. There is no kinetic theory for
surface heat-flux boundary condition or convective surface heat-flux
boundary condition, or liquid fluids or non-Newtonian fluids.
Therefore, calculations for heat transfer at themicroscale assume that
there is no thermal jump comparing the velocity jump. If this is
correct, then for surface heat fluxes, liquids, and non-Newtonian
fluids, the temperature boundary condition at the wall will be the
same as for nonslip flows. The previous researchers have assumed
that there is a nonjump temperature [28–36].
Except for a few, the stagnation-point flows of a micropolar fluid

have been studied using either a constant surface temperature or a
constant heat-flux boundary condition. Very recently, the study of
heat-transfer problem for the boundary layer concerning a convective
boundary condition has received considerable attention because
of its use in several engineering and industrial processes, such as
transpiration-cooling process, material drying, laser-pulse heating,
etc. Aziz [37] presented a similarity solution for laminar boundary
layer over a flat platewith a convective boundary condition.Abraham
andSparrow [38] investigated thevalidity of the relativemodel for the
problem of laminar fluid flow, which results from the simultaneous
motion of a freestream and its bounding surface in the same direction.
Sparrow and Abraham [39] developed a method for determining
universal solutions for streamwise variation of the temperature of a
moving sheet in the presence of an independentlymoving fluid. Ishak
et al. [40] have studied the radiation effects within the thermal
boundary over a moving plate under a convective boundary
condition. Jafar et al. [41] studied the steady laminar 2-D stagnation-
point flow and heat transfer of an incompressible viscous fluid
impinging normal to a horizontal plate, with the bottom surface of the
plate heated by convection from a hot fluid. Bataller [42] has
presented the effects of radiation on Blasius and Sakiadis flows with
convective boundary condition. Also, Makinde and Aziz [43] and
Yao et al. [44] have investigated boundary-layer flows over a vertical
plate and stretching/shrinking sheet, respectively, under the same
convective boundary conditions. Motivated by the aforementioned
investigations and applications, in this paper, the authors investigate
a heat-transfer problem with a convective boundary condition for the
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2-D flow of a micropolar fluid near a stagnation point at a stretching
plate in the presence of thermal radiation with slip velocity.

II. Formulation of the Problem

The equations governing the behavior of an incompressible steady
micropolar fluid in vectorial form [1,2] are the 1) conservation of mass
[Eq. (1)], 2)conservationof linearmomentum[Eq. (2)],3) conservation
of angular momentum [Eq. (3)], and 4) the energy [Eq. (4)].

∇ · U � 0 (1)

ρ�U · ∇�U � −∇p� �μ� k�∇2U� k∇ × σ � ρF (2)

ρJ�U · ∇�σ � �α� � β� � γ��∇�∇ · σ� − γ∇ × �∇ × σ� � k∇ × U

− 2kσ � ρl (3)

ρcp�U · ∇�T � κf∇2T − ∇qr � φ�Q (4)

inwhichF is the body force per unitmass; l is the body couple per unit
mass;U is the translation vector; σ is the microrotation vector; p is the
pressure; α�, β�, γ� and k are the material constants for micropolar
fluids; ρ is the fluid density; J is the microinertia; μ is the dynamic
viscosity; and κf is the thermal conductivity.T is the fluid temperature,
φ is the dissipation function, Q is used to present the internal heat
generation density caused by joule heating and the chemical or nuclear
reaction, qr is the radiation heat-flux vector, and cp is the specific heat
at constant pressure. Consider the steady, incompressible 2-D laminar
stagnation-point flow of an electrically conducting radiating micro-
polar fluid over a stretching plate, which coincides with the plane
y � 0. The flow is generated as the consequence of linear stretching of
the boundary sheet, caused by the simultaneous application of equal
and opposite forces along the x axiswhile keeping the origin fixed. The
flow being in the region y > 0 is shown in Fig. 1. A uniformmagnetic
fieldof strengthB0 is imposed along they axis. ThemagneticReynolds
number of the flow is taken to be small enough so that the induced
magnetic field is assumed to be a negligible field in comparison with
the applied magnetic field. The plate is considered to be electrically
nonconducting. The stretching-surface velocity is assumed to vary
linearlywith x (i.e., uw � ax). The freestream ismovingwith velocity
U � bx and at a constant temperature T∞, in which a and b are
positive constants, and x measures the distance from the stagnation
point. Whereas, the upper boundary of the surface is maintained at a
constant temperature Tw. It was assumed that all physical properties of
the fluid are fixed.
Under usual boundary-layer and Boussinesq approximations, the

governing boundary-layer equations taking into account the presence
of the radiation effect are given by the following equations [45,46]:

∂u
∂x
� ∂v

∂y
� 0 (5)

u
∂u
∂x
� v ∂u

∂y
� U dU

dx
�
�
ν� k

ρ

�
∂2u
∂y2
� k

ρ

∂N
∂y

−
σB2

0

ρ
�u −U� (6)

u
∂N
∂x
� v ∂N

∂y
� γ0

ρj

∂2N
∂y2

−
k

ρj

�
2N � ∂u

∂y

�
(7)

u
∂T
∂x
� v ∂T

∂y
� κ

ρcp

∂2T
∂y2

−
1

ρcp

∂qr
∂y

(8)

inwhichu and v are thevelocity components in the x and y directions,
respectively. T is the fluid temperature, N is the component of the
microrotation vector normal to the xy plane, μ is the dynamic
viscosity of the fluid, k is the gyro-viscosity, ρ is the density of the
fluid, σ is the electrical conductivity, κ is the thermal conductivity, cp
is the specific heat at constant pressure, qr is the radiative heat flux,
and γ0 is the spin-gradient viscosity.
The authors of the current study follow the recent work of the

author [22] by assuming that γ0 is given by

γ0 � �μ� k∕2�j � μ�1� K∕2�j (9)

This equation gives a relation between the coefficient of viscosity and
microinertia, in which K � k∕μ�> 0� is the material parameter,
j � ν∕a,

���
j
p

is the reference length, and ν � μ∕ρ is the kinematic
viscosity. This assumption is invoked to allow the field equations
to predict the correct behavior in the limiting case when the
microstructure effects become negligible and the total spin N is
reduced to the angular velocity [47].
The boundary conditions for the flowfield are

u � ax� α�
�
�μ� k� ∂u

∂y
� kN

�

v � 0; N � −m0

∂u
∂y
; at y � 0

u → U; N → 0; as y → ∞ (10)

in which α� is the slip coefficient, and m0 (0 ≤ m0 ≤ 1) is the
boundary parameter. When the boundary parameter m0 � 0, N � 0
is obtained, which is the no-spin condition, that is, the microelements
in a concentrated particle flow close to the wall are not able to rotate
(as stipulated by Jena and Mathur [48]). The case m0 � 1∕2
represents the weak concentration of microelements. The case
corresponding to m0 � 1 is used for the modeling of turbulent
boundary-layer flow (see Peddieson and McNitt [21]).
It is also assumed the bottom surface of the plate is to be heated by

convection from a hot fluid at uniform temperature Tf, which
provides a heat-transfer coefficient hf. Here, Tf > Tw > T∞. Then,
the boundary conditions at the plate surface and far into the cold fluid
can be expressed as [42]:

−κ
�
∂T
∂y

�
w

� hf �Tf − Tw� at y � 0 T → T∞; as y→ ∞

(11)

Using the Rosseland approximation [15]

qr � �−4σ�∕3k��
∂T4

∂y
(12)

in which σ� is the Stefan–Boltzmann constant, and k� is the mean
absorption coefficient. Assuming that the temperature differences
within the flow are sufficiently small such that T4 may be expressed
as a linear function of temperature. The fluid is considered to be gray,
absorbing–emitting radiation, but a nonscattering medium and the
Rosseland approximation are used to describe the radiative heat flux
in the energy equation. The radiative heat flux in the x direction isFig. 1 Flow model and coordinate system.
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considered negligible in comparison to the y direction. Hence,
expanding T4 in the Taylor series about T∞ and neglecting higher
terms to give

T4 ≅ 4T3
∞T − 3T4

∞ (13)

in which the higher-order terms of the expansion are neglected.
The following dimensionless variables are introduced:

η �
�
a

ν

�
1∕2
y; N � ax

�
a

ν

�
1∕2
h�η�

u � axf 0�η�; v � −�aν�1∕2f

θ�η� � T − T∞

Tf − T∞
(14)

Because of Eq. (14), the continuity equation [Eq. (5)] is automatically
satisfied, and Eqs. (6–9) will give then

�1� K�f 0 0 0 � ff 0 0 − f 02 � Kh 0 � λ2 �M�λ − f 0� � 0 (15)

�
1� K

2

�
h 0 0 � fh 0 − f 0h − K�2h� f 0 0� � 0 (16)

�1� R�θ 0 0 � Prfθ 0 � 0 (17)

The transformed boundary conditions are then given by

f 0 � 1� α�1� K�1 −m0��f 0 0 f � 0; h � −m0f
0 0;

θ 0 � −β�1 − θ�; at η � 0 f 0 → λ; h → 0;

θ → 0; as η → ∞
(18)

in which primes denote differentiation with respect to η, M �
σB2

0∕aρ is the permeability parameter, λ � b∕a is the velocity-ratio

parameter, α � α�μ
��������
a∕ν

p
is the slip parameter, Pr � μcp∕κ is the

Prandtl number, R � �16σ�T3
∞�∕�3k�κ� is the radiation parameter,

and β � �−hf∕κ��ν∕a�
1
2 is the surface-convection parameter.

The physical quantities of interest are the local skin-friction
coefficient Cfx and the local Nusselt numberNux , which are defined,
respectively, as

Cfx � −
2τw

ρ�ax�2 Nux �
xqw

κ�Tf − T∞�
(19)

in which the wall shear stress τw and the heat transfer from the plate
qw are defined by

τw �
�
�μ� k� ∂u

∂y
� kN

�
y�0

qw � −
�
κ
∂T
∂y

�
y�0

(20)

Using the similarity variables [Eq. (14)], the following equation is
obtained:

1

2
CfxRe

1∕2
x � −�1� K�1 −m0��f 0 0�0� NuxRe

−1∕2
x � −θ 0�0�

(21)

in which Rex � �uwx∕ν� is the local Reynolds number.

III. Method of Solution

The domain of the governing boundary-layer equations [Eqs. (15–
18)] is the unbounded region �0;∞�. However, for all practical
reasons, this could be replaced by the interval 0 ≤ η ≤ η∞, in which
η∞ is some large number to be specified for computational
convenience. Using the algebraic mapping

χ � 2
η

η∞
− 1

the unbounded region �0;∞� is finallymapped onto the finite domain
�−1; 1�, and the problem expressed by equations [Eqs. (15–18)] is
transformed into

�1�K�f 0 0 0�χ� �
�
η∞
2

�
�f�χ�f 0 0�χ� − f 02�χ��

�
�
η∞
2

�
2

�Kh 0�χ� −Mf 0�χ��

�
�
η∞
2

�
3

�λ2 �Mλ� � 0 (22)

�
1� K

2

�
h 0 0�χ� �

�
η∞
2

�
�f�χ�h 0�χ� − f 0�χ�h�χ��

− K
�
2

�
η∞
2

�
2

h�χ� � f 0 0�χ�
�
� 0 (23)

�1� R�θ 0 0�χ� �
�
η∞
2

�
Prf�χ�θ 0�χ� � 0 (24)

The transformed boundary conditions are given by

f 0�−1� �
�
η∞
2

�
�
�

2

η∞

�
α�1� K�1 −m0��f 0 0�−1�

f�−1� � 0; f 0�1� �
�
η∞
2

�
λ

h�−1� � −m0

�
2

η∞

�
2

f 0 0�−1�; h�1� � 0

θ 0�−1� � −β
�
η∞
2

�
�1 − θ�−1��; θ�1� � 0 (25)

in which, now, differentiation in Eqs. (22–25) will be with respect to
the new variable χ.
The technique is accomplished by starting with a Chebyshev

approximation for the highest-order derivatives f 0 0 0, h 0 0, and θ 0 0, and
generating approximations to the lower-order derivatives f 0 0, f 0, f,
h 0, h, θ 0, and θ as follows:
Setting f 0 0 0 � ϕ�χ�, h 0 0 � ψ�χ�, and θ

0 0 � ζ�χ�, then by
integration the following equations are obtained:

f 0 0�χ� �
Z

χ

−1
ϕ�χ� dχ � Cf1 (26)

f 0�χ� �
Z

χ

−1

Z
χ

−1
ϕ�χ� dχ dχ � Cf1�χ � 1� � Cf2 (27)

f�χ� �
Z

χ

−1

Z
χ

−1

Z
χ

−1
ϕ�χ� dχ dχ dχ � Cf1

�χ � 1�2
2

� Cf2�χ � 1� � Cf3 (28)

h 0�χ� �
Z

χ

−1
ψ�χ� dχ � Ch1 (29)

h�χ� �
Z

χ

−1

Z
χ

−1
ψ�χ� dχ dχ � Ch1�χ � 1� � Ch2 (30)

θ 0�χ� �
Z

χ

−1
ζ�χ� dχ � Cθ

1 (31)

θ�χ� �
Z

χ

−1

Z
χ

−1
ζ�χ� dχ dχ � Cθ

1�χ � 1� � Cθ
2 (32)
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From the boundary condition [Eq. (25)], the following equations are
obtained:

Cf1 �
1

2� α�1� K�1 −m0��� 2η∞�

×
��

η∞
2

�
�λ − 1� −

Z
1

−1

Z
χ

−1
ϕ�χ� dχ dχ

�

Cf2 �
�
η∞
2

�
� α�1� K�1 −m0��

�
2

η∞

�
Cf1

Cf3 � 0

Ch1 � −
1

2

Z
1

−1

Z
χ

−1
ψ�χ� dχ − 1

2
Ch2

Ch2 � −
m0� 2η∞��λ − 1�

2� α�1� K�1 −m0��� 2η∞�

�
m0� 2η∞�

2

2� α�1�K�1 −m0��� 2η∞�

Z
1

−1

Z
χ

−1
ϕ�χ� dχ dχ

Cθ
1 � −

1

2

Z
1

−1

Z
χ

−1
ζ�χ� dχ dχ − 1

2
Cθ
2

Cθ
2 � −

� 2η∞�
2β� � 2η∞�

Z
1

−1

Z
χ

−1
ζ�χ� dχdχ −

� 2η∞�
2β� � 2η∞�

� 1

Therefore, approximations to Eqs. (26–32) can be given as follows:

fi�χ� �
Xn
j�0

lfijϕj � d
f
i ; f 0i �χ� �

Xn
j�0

lf1ij ϕj � d
f1
i ;

f 0 0i �χ� �
Xn
j�0

lf2ij ϕj � d
f2
i

(33)

hi�χ� �
Xn
j�0

l
�h
ijψ j �

Xn
j�0

lhijϕj � dhi ;

h
0
i�χ� �

Xn
j�0

l
�h1
ij ψ j �

Xn
j�0

lh1ij ϕj � dh1i (34)

θi�χ� �
Xn
j�0

lθijζj � dθi ; θ 0i �χ� �
Xn
j�0

lθ1ij ζj � dθ1i (35)

for all i � 0�1�n; in which

lθij � b2ij −
1

2β� � 2η∞�

�
β�χi � 1� �

�
2

η∞

��
b2nj;

dθi � −
1

2β� � 2η∞�

�
β�χi � 1� �

�
2

η∞

��
� 1

lθ1ij � bij −
β

2β� � 2η∞�
b2nj; dθ1i � −

β

2β� � 2η∞�

lhij �
m0� 2η∞�

2

2� α�1� K�1 −m0��� 2η∞�

�
1 −
�χi � 1�

2

�
b2nj;

dhi �
m0� 2η∞��λ − 1�

2� α�1� K�1 −m0��� 2η∞�

��χi � 1�
2

− 1

�

lh1ij � −
m0� 2η∞�

2

2f2� α�1� K�1 −m0��
�

2
η∞

�o b2nj;

dh1i �
m0� 2η∞��λ − 1�

2
n
2� α�1� K�1 −m0��

�
2
η∞

�o

l
�h
ij � b2ij −

�χi � 1�
2

b2nj; l
�h1
ij � bij −

1

2
b2nj

lfij � b3ij −
1

2� α�1� K�1 −m0��
�

2
η∞

�

×
�
�χi � 1�2

2
� α�1�K�1 −m0���χi � 1�

�
2

η∞

�	
b2nj

dfi � �χi � 1�
�
η∞
2

�
�

�λ − 1��η∞
2
�

2� α�1� K�1 −m0��
�

2
η∞

�

×
�
�χi � 1�2

2
� α�1�K�1 −m0���χi � 1�

�
2

η∞

�	

lf1ij � b2ij −
1

2� α�1� K�1 −m0��
�

2
η∞

�

×
��

χi � 1� � α�1� K�1 −m0��
�

2

η∞

�	
b2nj

df1i �
�
η∞
2

�
�

�λ − 1��η∞
2
�

2� α�1� K�1 −m0��
�

2
η∞

�

×
�
�χi � 1� � α�1� K�1 −m0��

�
2

η∞

�	

lf2ij � bij −
1

2� α�1� K�1 −m0��
�

2
η∞

� b2nj;

df2i �
�λ − 1��η∞

2
�

2� α�1� K�1 −m0��
�

2
η∞

�

in which

b2ij � �χi − χj�bij
and bij are the elements of the matrix B, as given in [49].
By using Eqs. (33–35), one can transform Eqs. (22–24) to the

following system of nonlinear equations in the highest derivatives:

�1� K�ϕi �
�
η∞
2

���Xn
j�0

lfijϕj � d
f
i

��Xn
j�0

lf2ij ϕj � d
f2
i

�

−
�Xn
j�0

lf1ij ϕj � d
f1
i

�
2
�

�
�
η∞
2

�
2
�
K

�Xn
j�0

l
�h1
ij ψ j �

Xn
j�0

lh1ij ϕj � dh1i
�

−M
�Xn
j�0

lf1ij ϕj � d
f1
i

��
�
�
η∞
2

�
3

�λ2 �Mλ� � 0 (36)

�
1� K

2

�
ψ i �

�
η∞
2

���Xn
j�0

lfijϕj � d
f
i

�

×
�Xn
j�0

l
�h1
ij ψ j �

Xn
j�0

lh1ij ϕj � dh1i
�
−
�Xn
j�0

lf1ij ϕj � d
f1
i

�

×
�Xn
j�0

l
�h
ijψ j �

Xn
j�0

lhijϕj � dhi
��

− K
�
2

�
η∞
2

�
2
�Xn
j�0

l
�h
ijψj �

Xn
j�0

lhijϕj � dhi
�

�
�Xn
j�0

lf2ij ϕj � d
f2
i

��
� 0 (37)

�1� R�ζi �
�
η∞
2

�
Pr

�Xn
j�0

lfijϕj � d
f
i

��Xn
j�0

lθ1ij ζj � dθ1i
�
� 0

(38)

This system is then solved using Newton’s iteration method.
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IV. Results and Discussion

To assess the accuracy of the present numerical method, the
numerical results obtained for−f 0 0�0� and−θ 0�0� are comparedwith
those obtained by Boutros et al. [50] and Pop et al. [51], taking into
account that K � 0. The results show good agreement as seen in
Tables 1–3.
The authors have considered in some detail the influence of the

various parameters such as the material parameter K, the magnetic
parameterM, the velocity-ratio parameter λ, the slip parameter α, the
radiation parameterR, and the surface-convection parameter β on the
velocity, microrotation, and temperature profiles, which are shown in
Figs. 2–14. The samples of the velocity andmicrorotation profiles for
the different values of the material parameter K when the other
parameters are fixed are presented in Figs. 2 and 3, respectively. It is
seen from Fig. 2 that for λ > 1, the dimensionless velocity f 0

decreases with the increase of K near the surface; the inverse is true
away from the surface, and the opposite is true for λ < 1. The
microrotation profiles h increase as K increases for λ > 1, whereas
for λ < 1, the profiles decrease asK increases near the surface, and the
reverse is true at a larger distance from the surface, which is shown in
Fig. 3, whereas Fig. 4 presents the effect of themagnetic parameterM
on f 0. It is noticed that for λ < 1, f 0 decreases with the increase ofM,
whereas f 0 increases for λ > 1. Figure 5 displays the influence ofM
on h. It is obvious that for λ > 1, h decreases asM increases near the
surface; the inverse is true away from the surface, and the opposite is
true for λ < 1. This is because when the imposed pressure force
�σB2

0∕ρ�U overcomes the Lorentz force �σB2
0∕ρ�u (i.e., U > u), the

effect of themagnetic-interaction parameter is to increase thevelocity
and decrease the microrotation profiles near the plate, and the
opposite is true away from the plate. Similarly, when the Lorentz
force dominates over the imposed pressure force (i.e., U < u),

the effect of the magnetic-interaction parameter will decrease the
velocity and increase themicrorotation profiles near the plate, and the
opposite is true away from the plate. Figure 6 illustrates the effects of
M on the temperature profiles θ. It is observed that θ increases with
the increase ofM for the case λ < 1, but for λ > 1, the effects ofM are
not illustrated. From this figure, it can be seen that the effect ofM on θ
has no significant effect on the temperature inside the boundary layer.
Figure 7 shows the variation of f 0�η�, with η for various values of
the slip parameter α. It is seen that for λ > 1, f 0 increases with the
increase of α, and it decreases with the increase of α for λ < 1. The
microrotation profiles for different values of α have been illustrated in
Fig. 8. From this figure, it is noticed that for λ > 1, h increases with
the increase of α, but for λ < 1, h decreases as α increases. The
increase in the value of the slip parameter in the enhancement of the

Table 1 Comparison between the values of −θ 0�0� for various values
of λ and Pr with K � 0 andM � 0 in the absence of R

Prλ Pop et al. [51] Boutros et al. [50] Present work

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

0.1 0.381 0.600 0.773 0.3827 0.6051 0.7770 0.3827 0.6025 0.7769
0.2 0.406 0.621 0.793 0.4073 0.6256 0.7972 0.4073 0.6254 0.7972
0.5 0.471 0.689 0.859 0.4728 0.6925 0.8648 0.4727 0.6925 0.8648
1.0 0.562 0.793 0.970 0.5641 0.7979 0.9772 0.5642 0.7979 0.9773
2.0 0.708 0.971 1.168 0.7118 0.9787 1.1781 0.7116 0.9786 1.1782
3.0 0.828 1.122 1.339 0.8335 1.1321 1.352 0.832 1.1299 1.350

Table 2 Comparison between the values of −f 0 0�0� for
various values of λ with K � 0 andM � 0

λ −f 0 0�0�
Pop et al. [51] Boutros et al. [50] Present work

0.1 0.9694 0.9696 0.96939
0.2 0.9189 0.9182 0.91811
0.5 0.6673 0.66726 0.66726
2.0 −2.0174 −2.0175 −2.0174
3.0 −4.7290 −4.72928 −4.7297

Table 3 Comparison between the numerical results and
the results given by Boutros et al. [50] of −f 0 0�0� for

various values of λ andM with K � 0

Mλ Boutros et al. [50] Present work

0.5 1.0 1.5 0.5 1.0 1.5

0.1 1.15837 1.32111 1.46612 1.15836 1.32110 1.46612
0.2 1.07683 1.21562 1.34038 1.07683 1.21562 1.34038
0.5 0.75401 0.83212 0.90369 0.75402 0.83212 0.90369
2.0 −2.13632 −2.24910 −2.35667 −2.13632 −2.24910 −2.3566
3.0 −4.9337 −5.13038 −5.31997 −4.9338 −5.13037 −5.31996

Fig. 2 Velocity profiles for various values of K withM � 0.5, α � 0.5,
Pr � 0.72, β � 5, and R � 0.3.

Fig. 3 Microrotation profiles for various values of K with M � 0.5,
α � 0.5, Pr � 0.72, β � 5, and R � 0.3.
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velocity and microrotation profiles inside the boundary layer for
λ > 1 is noticed. The opposite is true for λ < 1. This behavior is
readily understood from the slip-velocity condition at the surface in
Eq. (18). Figure 9 shows the effect of α on θ. From this figure, one

sees that for λ > 1, the temperature profiles decrease as α increases,
whereas the opposite is true for λ < 1. The effects of the velocity-ratio
parameter λ on f 0, h, and θ are displayed in Figs. 10–12, respectively.
It is seen from Fig. 10 that for λ > 1, that is, the freestream velocity is
greater than the stretching-surface velocity, the boundary-layer
thickness increases as λ increases. On the other hand,when λ < 1, that
is, the stretching-surface velocity exceeds the freestream velocity, the
boundary-layer thickness decreases with increasing λ. It is noticed
that for λ � 1, that is, the surface of the stretching surface is equal to
the freestreamvelocity, there is no formation of the boundary layer. In
Fig. 11, one can see that h decreases on both λ > 1 and λ < 1. It is
observed from Fig. 12 that θ decreases as λ increases.
From Fig. 13, it is seen that with the increase in the radiation

parameterR, the fluid temperature increases for both cases λ > 1 and
λ < 1. The increase of radiation parameter R implies the release of
heat energy from the flow region by means of radiation; this can also
be explained by the fact that the effect of radiation is to increase the
rate of energy transport to the fluid and, accordingly, increase the
fluid temperature. Figure 14 presents the effect of the surface-
convection parameter β on θ. It is observed that the plate surface
temperature increases as β increases that for both cases of λ > 1 and
λ < 1. In fact, as β → ∞, the solution approaches the classical
solution for the constant surface temperature. This can be seen from
the boundary condition [Eq. (18)], which reduces to θ�0� � 1
as β → ∞.

Fig. 5 Microrotation profiles for various values of M with K � 1.2,
α � 0.5, Pr � 0.72, β � 5, and R � 0.3.

Fig. 6 Temperature profiles for various values of M with K � 1.2,
α � 0.5, Pr � 0.72, β � 5, and R � 0.3.

Fig. 7 Velocity profiles for various values of α with K � 1.2,M � 0.5,
Pr � 0.72, β � 5, and R � 0.3.

Fig. 8 Microrotation profiles for various values of α with K � 1.2,
M � 0.5, Pr � 0.72, β � 5, and R � 0.3.

Fig. 4 Velocity profiles for various values ofM with K � 1.2, α � 0.5,
Pr � 0.72, β � 5, and R � 0.3.
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Figures 15–17 illustrate the effects of λ, α,M,K, and β on the local
skin-friction coefficient and the local Nusselt number with λ > 1 and
λ < 1, respectively. From these figures, one observes that for λ > 1,
M has the effect of decreasing the local skin-friction coefficient. The

localNusselt number increaseswith increasingM for λ > 1λ > 1; the
opposite is true for λ < 1. Moreover, increasingK and α enhances the
local skin-friction coefficient for λ > 1 and reduces it for λ < 1,
whereas the local Nusselt number decreases asK increases for λ > 1,

Fig. 10 Velocity profiles for various values of λwithK � 1.2,M � 0.5,
α � 0.5, Pr � 0.72, β � 5, and R � 0.3.

Fig. 11 Microrotation profiles for various values of λ with K � 1.2,
M � 0.5, α � 0.5, Pr � 0.72, β � 5, and R � 0.3.

Fig. 12 Temperature profiles for various values of λ with K � 1.2,
M � 0.5, α � 0.5, Pr � 0.72, β � 5, and R � 0.3.

Fig. 13 Temperature profiles for various values of R with M � 0.5,
α � 0.5, Pr � 0.72, β � 5, K � 1.2.

Fig. 14 Temperature profiles for various values of β with M � 0.5,
α � 0.5, Pr � 0.72, R � 0.3, and K � 1.2.

Fig. 9 Temperature profiles for various values of α with K � 1.2,
M � 0.5, Pr � 0.72, β � 5, and R � 0.3.
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and it increases asK increases for λ < 1. The inverse is true for α. It is
also found that the local skin-friction coefficient decreases with
increasing λ, but the local Nusselt number increases as λ increases.
Moreover, it is noticed that the values of f 0 0�0� are negative when
λ < 1, which means that the surface exerts a drag force on the fluid,
but when f 0 0�0� is positive for λ > 1, the fluid velocity is enhanced,
as clearly seen in Fig. 10. Moreover, the local Nusselt number
decreases with the increase of R in both cases for the velocity-ratio
parameter λ (λ > 1 and λ < 1), but it increases with the increase of β
for both cases λ > 1 and λ < 1.

V. Conclusions

The problem of steady two-dimensional flow of micropolar fluid
near a stagnation point at a stretching plate with radiation taking into
account the presence of convective boundary condition and slip
velocity has been investigated. Using similarity transformations, the
governing equations have been transformed into a system of coupled
nonlinear ordinary differential equations, which are solved numeri-
cally by using the Chebyshev spectral method. The effects of various
parametersM, K, α, λ, R, and β on the flow and heat characteristics
were examined. It was found that the local skin-friction coefficient
increases as the material parameter and the slip parameter in-
crease, whereas it decreases as the magnetic parameter increases for
λ > 1λ > 1; the opposite is true for λ < 1. It is also found that the local
skin-friction coefficient decreases with increasing the velocity-ratio
parameter, but the local Nusselt number increases as the velocity-
ratio parameter increases. The local Nusselt number decreases as the
material parameter increases for λ > 1, whereas it increases as the
material parameter increases for λ < 1. The inverse is true for the slip
parameter and the magnetic parameter. Also, it was found that for
both cases λ > 1 and λ < 1, the local Nusselt number increases with
increasing the surface-convection parameter, whereas the radiation
parameter leads to a decrease in the local Nusselt number.

References

[1] Eringen, A. C., “Theory of Micropolar Fluids,” Journal of Mathematics

and Mechanics, Vol. 16, No. 1, 1966, pp. 1–18.
doi:10.1512/iumj.1967.16.16001

[2] Eringen, A. C., “Theory of Thermomicropolar Fluids,” Journal of

Mathematical Analysis and Applications, Vol. 38, No. 2, 1972,
pp. 480–495.
doi:10.1016/0022-247X(72)90106-0

[3] Ariman, T., Turk, M. A., and Sylvester, N. D., “Microcontinuum Fluid
Mechanics—AReview,” International Journal of Engineering Science,
Vol. 11, No. 8, 1973, pp. 905–915.
doi:10.1016/0020-7225(73)90038-4

[4] Ariman, T., Turk, M. A., and Sylvester, N. D., “Applications of
Microcontinuum Fluid Mechanics,” International Journal of Engineer-
ing Science, Vol. 12, No. 4, 1974, pp. 273–279.
doi:10.1016/0020-7225(74)90059-7

[5] Lukaszewicz, G., Micropolar Fluids: Theory and Application,
Birkhäuser, Basel, 1999, pp. 230–233.

Fig. 15 a) Local skin-friction cofficient and b) local Nusselt number as a
function of λ for various values of α.

Fig. 16 a) Local skin-friction cofficient and b) local Nusselt number as a

function of K for various values ofM.

Fig. 17 Local Nusselt number as a function ofR for various values of β
with α � 0.5, Pr � 0.72,M � 0.5, and K � 1.2.

158 MAHMOUD ANDWAHEED

D
ow

nl
oa

de
d 

by
 N

A
T

L
 C

E
N

T
R

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

Se
pt

em
be

r 
16

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.T

40
16

 

http://dx.doi.org/10.1512/iumj.1967.16.16001
http://dx.doi.org/10.1512/iumj.1967.16.16001
http://dx.doi.org/10.1512/iumj.1967.16.16001
http://dx.doi.org/10.1512/iumj.1967.16.16001
http://dx.doi.org/10.1512/iumj.1967.16.16001
http://dx.doi.org/10.1016/0022-247X(72)90106-0
http://dx.doi.org/10.1016/0022-247X(72)90106-0
http://dx.doi.org/10.1016/0020-7225(73)90038-4
http://dx.doi.org/10.1016/0020-7225(73)90038-4
http://dx.doi.org/10.1016/0020-7225(74)90059-7
http://dx.doi.org/10.1016/0020-7225(74)90059-7


[6] Eringen, A. C., Microcontinuum Field Theories, II: Fluent Media,
Springer, New York, 2001.

[7] Soundalgekar, V. M., and Takhar, H. S., “Flow ofMicropolar Fluid Past
a Continuously Moving Plate,” International Journal of Engineering

Science, Vol. 21, No. 8, 1983, pp. 961–965.
doi:10.1016/0020-7225(83)90072-1

[8] Hady, F. M., “Short Communication on the Solution of Heat Transfer to
Micropolar Fluid from a Non-Isothermal Stretching Sheet with
Injection,” International Journal of Numerical Methods for Heat &

Fluid Flow, Vol. 6, No. 6, 1996, pp. 99–104.
doi:10.1108/09615539610131299

[9] Mahmoud, M. A. A., “Thermal Radiation Effects on MHD Flow of a
Micropolar Fluid Over a Stretching Surface with Variable Thermal
Conductivity,” Physica A: Statistical Mechanics and Its Applications,
Vol. 375, No. 2, 2007, pp. 401–410.
doi:10.1016/j.physa.2006.09.010

[10] Pal, D., and Chatterjee, S., “Heat and Mass Transfer in MHD
Non-Darcian Flow of a Micropolar Fluid Over a Stretching Sheet
Embedded in a Porous Media with Non-Uniform Heat Source and
Thermal Radiation,” Communications in Nonlinear Science and

Numerical Simulation, Vol. 15, No. 7, 2010, pp. 1843–1857.
doi:10.1016/j.cnsns.2009.07.024

[11] Mendez, F., and Treviño, C., “Heat Transfer Analysis on a
Moving Flat Sheet Emerging into Quiescent Fluid,” Journal of

Thermophysics and Heat Transfer, Vol. 16, No. 3, 2002, pp. 373–
378.
doi:10.2514/1.6690

[12] Perdikis, C., and Raptis, A., “Heat Transfer of aMicropolar Fluid by the
Presence of Radiation,” Heat and Mass Transfer, Vol. 31, No. 6, 1996,
pp. 381–382.
doi:10.1007/BF02172582

[13] Kim, Y. J., and Fedorov, A. G., “Transient Mixed Radiative Convection
Flowof aMicropolar Fluid Past aMoving, Semi-InfiniteVertical Porous
Plate,” International Journal of Heat and Mass Transfer, Vol. 46,
No. 10, 2003, pp. 1751–1758.
doi:10.1016/S0017-9310(02)00481-7

[14] Mahmoud, M. A. A., Mahmoud, A. M., and Waheed, S. E.,
“Hydromagnetic Boundary Layer Micropolar Fluid Flow Over a
Stretching Surface Embedded in a Non-Darcian Porous Medium with
Radiation,” Mathematical Problems in Engineering, Vol. 2006,
No. 39392, 2006, pp. 1–10, Article ID 39392.

[15] Raptis, A., “Radiation and Free Convection Flow Through a Porous
Medium,” International Communications in Heat and Mass Transfer,
Vol. 25, No. 2, 1998, pp. 289–295.
doi:10.1016/S0735-1933(98)00016-5

[16] Ishak,A., Nazar, R., and Pop, I., “Boundary-Layer Flow of aMicropolar
Fluid on a Continuous Moving or Fixed Surface,” Canadian Journal of
Physics, Vol. 84, No. 5, 2006, pp. 399–410.
doi:10.1139/p06-059

[17] Chen, T. M., “Radiation Effects on the Magnethydrodynamic Free
Convection Flow,” Journal of Thermophysics and Heat Transfer,
Vol. 22, No. 1, 2002, pp. 125–128.
doi:10.2514/1.32202

[18] Hiemenz, K., “Die Grenzschicht an Einem in den Gleichförmigen
Flüssigkeitsstrom Eingetauchten Geraden Kreiszylinder,” Dingler’s

Polytechnic Journal, Vol. 326, No. 21, 1911, pp. 321–410.
[19] Schlichting, H., and Bussmann, K., “Exakte Lösungen für die laminare

Grenzschicht mit Absaugung und Ausblasen,” Schriften der Deutschen
Akademie der Luftfahrtforschung, 7B, Nr. 2, edited by Schlichting, H.,
and Gersten, K., “Boundary-Layer Theory,” Pt. I, 8th ed., Springer-
Verlag, New York, 2000, pp. 302–303.

[20] Ariel, P. D., “Stagnation Point Flow with Suction: An Approximate
Solution,” Journal of Applied Mechanics, Vol. 61, No. 4, 1994,
pp. 976–978.
doi:10.1115/1.2901589

[21] Peddieson, J. Jr., and McNitt, R. P., “Boundary-Layer Theory for a
Micropolar Fluid,” Recent Advances in Engineering Science, edited
by Eringen, A. C., Vol. 5, Gordon and Breach, New York, 1970,
pp. 405–426.

[22] Nazar, R., Amin, N., Filip, D., and Pop, I., “Stagnation Point Flow of a
Micropolar Fluid Towards a Stretching Sheet,” International Journal of
Non-Linear Mechanics, Vol. 39, No. 7, 2004, pp. 1227–1235.
doi:10.1016/j.ijnonlinmec.2003.08.007

[23] Ishak, A., Nazar, R., and Pop, I., “Mixed Convection on the Stagnation
Point Flow Toward a Vertical, Continuously Stretching Sheet,” Journal
of Heat Transfer, Vol. 129, No. 8, 2007, pp. 1087–1090.
doi:10.1115/1.2737482

[24] Ramadan,K., andAl-Nimr,M.A., “On ImpulsivelyStartedConvection:
The Case of Stagnation Point Flow,” International Journal of Thermal

Sciences, Vol. 50, No. 12, 2011, pp. 2355–2364.
doi:10.1016/j.ijthermalsci.2011.07.013

[25] Kogan, M. N., Rarefied Gas Dynamics, Plenum, New York, 1969,
pp. 386–400.

[26] Kiwan, S., and Al-Nimr, M. A., “Flow and Heat Transfer Over a
Stretched Microsurface,” Journal of Heat Transfer, Vol. 131, No. 6,
2009, pp. 1–8.
doi:10.1115/1.3090811

[27] Kiwan, S., and Al-Nimr, M. A., “Investigation into the Similarity
Solution for Boundary Layer Flows in Microsystems,” Journal of Heat
Transfer, Vol. 132, No. 4, 2010, pp. 1–9.
doi:10.1115/1.4000886

[28] Aziz, A., “Hydrodynamic and Thermal Slip Flow Boundary Layers
Over a Flat Plate with Constant Heat Flux Boundary Condition,”
Communications in Nonlinear Science and Numerical Simulation,
Vol. 15, No. 3, 2010, pp. 573–580.
doi:10.1016/j.cnsns.2009.04.026

[29] Rahman, M. M., “Locally Similar Solutions for Hydromagnetic and
Thermal Slip Flow Boundary Layers Over a Flat Plate with Variable
Fluid Properties and Convective Surface Boundary Condition,”
Meccanica, Vol. 46, No. 5, 2011, pp. 1127–1143.
doi:10.1007/s11012-010-9372-2

[30] Das, K., “Impact of Thermal Radiation on MHD Slip Flow Over a Flat
Plate with Variable Fluid Properties,” Heat and Mass Transfer, Vol. 48,
No. 5, 2012, pp. 767–778.
doi:10.1007/s00231-011-0924-3

[31] Martin, M. J., and Boyd, I. D., “Momentum and Heat Transfer in a
Laminar Boundary Layer with Slip Flow,” Journal of Thermophysics

and Heat Transfer, Vol. 20, No. 4, 2006, pp. 710–719.
doi:10.2514/1.22968

[32] Martin, M. J., and Boyd, I. D., “Falkner–Skan Flow Over aWedge with
Slip Boundary Conditions,” Journal of Thermophysics and Heat

Transfer, Vol. 24, No. 2, 2010, pp. 263–270.
doi:10.2514/1.43316

[33] Chaudhary, R. C., and Jain, P., “Combined Heat and Mass Transfer in
Magneto-Micropolar Fluid Flow from Radiate Surface with
Variable Permeability in Slip-Flow Regime,” Zeitschrift für

Angewandte Mathematik und Mechanik, Vol. 87, Nos. 8–9, 2007,
pp. 549–563.
doi:10.1002/(ISSN)1521-4001

[34] Yazdi, M. H., Abdullah, S., Hashim, I., and Sopian, K., “Slip MHD
Liquid Flow and Heat Transfer Over Non-Linear Permeable Stretching
Surface with Chemical Reaction,” International Journal of Heat and

Mass Transfer, Vol. 54, Nos. 15–16, 2011, pp. 3214–3225.
doi:10.1016/j.ijheatmasstransfer.2011.04.009

[35] Sahoo, B., “Flow and Heat Transfer of a Non-Newtonian Fluid Past a
Stretching Sheet with Partial Slip,” Communications in Nonlinear

Science and Numerical Simulation, Vol. 15, No. 3, 2010, pp. 602–615.
doi:10.1016/j.cnsns.2009.04.032

[36] Hayat, T., Javed, T., and Abbas, Z., “Slip Flow and Heat Transfer of a
Second Grade Fluid Past a Stretching Sheet Through a Porous Space,”
International Journal of Heat and Mass Transfer, Vol. 51, Nos. 17–18,
2008, pp. 4528–4534.
doi:10.1016/j.ijheatmasstransfer.2007.12.022

[37] Aziz, A., “A Similarity Solution for Laminar Thermal Boundary Layer
Over a Flat Plate with a Convective Surface Boundary Condition,”
Communications in Nonlinear Science and Numerical Simulation,
Vol. 14, No. 4, 2009, pp. 1064–1068.
doi:10.1016/j.cnsns.2008.05.003

[38] Abraham, J. P., and Sparrow, E. M., “Friction Drag Resulting from the
Simultaneous Imposed Motions of a Freestream and Its Bounding
Surface,” International Journal of Heat and Fluid Flow, Vol. 26, No. 2,
2005, pp. 289–295.
doi:10.1016/j.ijheatfluidflow.2004.08.007

[39] Sparrow, E. M., and Abraham, J. P., “Universal Solutions for the
Streamwise Variation of the Temperature of a Moving Sheet in the
Presence of a Moving Fluid,” International Journal of Heat and Mass

Transfer, Vol. 48, No. 15, 2005, pp. 3047–3056.
doi:10.1016/j.ijheatmasstransfer.2005.02.028

[40] Ishak, A., Yacob, N. A., and Bachok, N., “Radiation Effects on the
Thermal Boundary Layer Flow Over a Moving Plate with Convective
Boundary Condition,” Meccanica, Vol. 46, No. 4, 2011, pp. 795–801.
doi: 10.1007/s11012-010-9338-4

[41] Jafar, K., Ishak, A., and Nazar, R., “Magnetohydrodynamic Stagnation
Point Flowwith a Convective Surface Boundary Condition,” Zeitschrift
für Naturforschung A, Vol. 66, Nos. 8–9, 2011, pp. 495–499.
doi:10.5560/ZNA.2011-0013

[42] Bataller, R. C., “Radiation Effects for the Blasius and Sakiadis Flows
with a Convective Surface Boundary Condition,” Applied Mathematics

MAHMOUD ANDWAHEED 159

D
ow

nl
oa

de
d 

by
 N

A
T

L
 C

E
N

T
R

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

Se
pt

em
be

r 
16

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.T

40
16

 

http://dx.doi.org/10.1016/0020-7225(83)90072-1
http://dx.doi.org/10.1016/0020-7225(83)90072-1
http://dx.doi.org/10.1108/09615539610131299
http://dx.doi.org/10.1108/09615539610131299
http://dx.doi.org/10.1016/j.physa.2006.09.010
http://dx.doi.org/10.1016/j.physa.2006.09.010
http://dx.doi.org/10.1016/j.physa.2006.09.010
http://dx.doi.org/10.1016/j.physa.2006.09.010
http://dx.doi.org/10.1016/j.physa.2006.09.010
http://dx.doi.org/10.1016/j.physa.2006.09.010
http://dx.doi.org/10.1016/j.cnsns.2009.07.024
http://dx.doi.org/10.1016/j.cnsns.2009.07.024
http://dx.doi.org/10.1016/j.cnsns.2009.07.024
http://dx.doi.org/10.1016/j.cnsns.2009.07.024
http://dx.doi.org/10.1016/j.cnsns.2009.07.024
http://dx.doi.org/10.1016/j.cnsns.2009.07.024
http://dx.doi.org/10.2514/1.6690
http://dx.doi.org/10.2514/1.6690
http://dx.doi.org/10.2514/1.6690
http://dx.doi.org/10.1007/BF02172582
http://dx.doi.org/10.1007/BF02172582
http://dx.doi.org/10.1016/S0017-9310(02)00481-7
http://dx.doi.org/10.1016/S0017-9310(02)00481-7
http://dx.doi.org/10.1016/S0735-1933(98)00016-5
http://dx.doi.org/10.1016/S0735-1933(98)00016-5
http://dx.doi.org/10.1139/p06-059
http://dx.doi.org/10.1139/p06-059
http://dx.doi.org/10.2514/1.32202
http://dx.doi.org/10.2514/1.32202
http://dx.doi.org/10.2514/1.32202
http://dx.doi.org/10.1115/1.2901589
http://dx.doi.org/10.1115/1.2901589
http://dx.doi.org/10.1115/1.2901589
http://dx.doi.org/10.1016/j.ijnonlinmec.2003.08.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2003.08.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2003.08.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2003.08.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2003.08.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2003.08.007
http://dx.doi.org/10.1115/1.2737482
http://dx.doi.org/10.1115/1.2737482
http://dx.doi.org/10.1115/1.2737482
http://dx.doi.org/10.1016/j.ijthermalsci.2011.07.013
http://dx.doi.org/10.1016/j.ijthermalsci.2011.07.013
http://dx.doi.org/10.1016/j.ijthermalsci.2011.07.013
http://dx.doi.org/10.1016/j.ijthermalsci.2011.07.013
http://dx.doi.org/10.1016/j.ijthermalsci.2011.07.013
http://dx.doi.org/10.1016/j.ijthermalsci.2011.07.013
http://dx.doi.org/10.1115/1.3090811
http://dx.doi.org/10.1115/1.3090811
http://dx.doi.org/10.1115/1.3090811
http://dx.doi.org/10.1115/1.4000886
http://dx.doi.org/10.1115/1.4000886
http://dx.doi.org/10.1115/1.4000886
http://dx.doi.org/10.1016/j.cnsns.2009.04.026
http://dx.doi.org/10.1016/j.cnsns.2009.04.026
http://dx.doi.org/10.1016/j.cnsns.2009.04.026
http://dx.doi.org/10.1016/j.cnsns.2009.04.026
http://dx.doi.org/10.1016/j.cnsns.2009.04.026
http://dx.doi.org/10.1016/j.cnsns.2009.04.026
http://dx.doi.org/10.1007/s11012-010-9372-2
http://dx.doi.org/10.1007/s11012-010-9372-2
http://dx.doi.org/10.1007/s00231-011-0924-3
http://dx.doi.org/10.1007/s00231-011-0924-3
http://dx.doi.org/10.2514/1.22968
http://dx.doi.org/10.2514/1.22968
http://dx.doi.org/10.2514/1.22968
http://dx.doi.org/10.2514/1.43316
http://dx.doi.org/10.2514/1.43316
http://dx.doi.org/10.2514/1.43316
http://dx.doi.org/10.1002/(ISSN)1521-4001
http://dx.doi.org/10.1002/(ISSN)1521-4001
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.009
http://dx.doi.org/10.1016/j.cnsns.2009.04.032
http://dx.doi.org/10.1016/j.cnsns.2009.04.032
http://dx.doi.org/10.1016/j.cnsns.2009.04.032
http://dx.doi.org/10.1016/j.cnsns.2009.04.032
http://dx.doi.org/10.1016/j.cnsns.2009.04.032
http://dx.doi.org/10.1016/j.cnsns.2009.04.032
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.022
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.022
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.022
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.022
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.022
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.022
http://dx.doi.org/10.1016/j.cnsns.2008.05.003
http://dx.doi.org/10.1016/j.cnsns.2008.05.003
http://dx.doi.org/10.1016/j.cnsns.2008.05.003
http://dx.doi.org/10.1016/j.cnsns.2008.05.003
http://dx.doi.org/10.1016/j.cnsns.2008.05.003
http://dx.doi.org/10.1016/j.cnsns.2008.05.003
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.08.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.08.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.08.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.08.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.08.007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.08.007
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
http://dx.doi.org/10.1007/s11012-010-9338-4
http://dx.doi.org/10.1007/s11012-010-9338-4
http://dx.doi.org/10.5560/ZNA.2011-0013
http://dx.doi.org/10.5560/ZNA.2011-0013
http://dx.doi.org/10.5560/ZNA.2011-0013


and Computation, Vol. 206, No. 2, 2008, pp. 832–840.
doi:10.1016/j.amc.2008.10.001

[43] Makinde, O. D., andAziz, A., “MHDMixed Convection from aVertical
Plate Embedded in a Porous Medium with a Convective Boundary
Condition,” International Journal of Thermal Sciences, Vol. 49, No. 9,
2010, pp. 1813–1820.
doi:10.1016/j.ijthermalsci.2010.05.015

[44] Yao, S., Fang, T., and Zhong, Y., “Heat Transfer of a Generalized
Stretching/Shrinking Wall Problem with Convective Boundary
Conditions,” Communications in Nonlinear Science and Numerical

Simulation, Vol. 16, No. 2, 2011, pp. 752–760.
doi:10.1016/j.cnsns.2010.05.028

[45] Ishak, A., Nazar, R., and Pop, I., “Magnetohydrodynamic (MHD) Flow
of aMicropolar Fluid Towards a Stagnation Point on aVertical Surface,”
Computers & Mathematics with Applications, Vol. 56, No. 12, 2008,
pp. 3188–3194.
doi:10.1016/j.camwa.2008.09.013

[46] Hayat, T., Hussain, M., Hendi, A. A., and Nadeem, S., “MHD
Stagnation Point Flow Towards Heated Shrinking Surface Subjected to
Heat Generation/Absorption,” Applied Mathematics and Mechanics,
Vol. 33, No. 5, 2012, pp. 631–648.
doi:10.1007/s10483-012-1576-6

[47] Ahmedi, G., “Self-Similar Solution of Incompressible Micropolar
Boundary Layer Flow Over a Semi-Infinite Plate,” International Journal
of Engineering Science, Vol. 14, No. 7, 1976, pp. 639–646.
doi:10.1016/0020-7225(76)90006-9

[48] Jena, S. K., and Mathur, M. N., “Similarity Solutions for Laminar Free
Convection Flow of a Thermomicropolar Fluid Past a Non-Isothermal
Vertical Flat Plate,” International Journal of Engineering Science,
Vol. 19, No. 11, 1981, pp. 1431–1439.
doi:10.1016/0020-7225(81)90040-9

[49] El-Gendi, S. E., “Chebyshev Solution of Differential, Integral and
Integro-Differential Equations,” Computer Journal, Vol. 12, No. 3,
1969, pp. 282–287.
doi:10.1093/comjnl/12.3.282

[50] Boutros, Z. Y., Abd-el-Malek, M. B., Badran, N. A., and Hassan, S. H.,
“Lie-Group Method of Solution for Steady Two-Dimensional
Boundary-Layer Stagnation-Point Flow Towards a Heated Stretching
Sheet Placed in a Porous Medium,” Meccanica, Vol. 41, No. 6, 2006,
pp. 681–691.
doi:10.1007/s11012-006-9014-x

[51] Pop, S. R., Grosan, T., and Pop, I., “Radiation Effects on the Flow Near
the Stagnation Point of a Stretching Sheet,” Technische Mechanik,
Vol. 25, No. 2, 2004, pp. 100–106.

160 MAHMOUD ANDWAHEED

D
ow

nl
oa

de
d 

by
 N

A
T

L
 C

E
N

T
R

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

Se
pt

em
be

r 
16

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.T

40
16

 

http://dx.doi.org/10.1016/j.amc.2008.10.001
http://dx.doi.org/10.1016/j.amc.2008.10.001
http://dx.doi.org/10.1016/j.amc.2008.10.001
http://dx.doi.org/10.1016/j.amc.2008.10.001
http://dx.doi.org/10.1016/j.amc.2008.10.001
http://dx.doi.org/10.1016/j.amc.2008.10.001
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015
http://dx.doi.org/10.1016/j.cnsns.2010.05.028
http://dx.doi.org/10.1016/j.cnsns.2010.05.028
http://dx.doi.org/10.1016/j.cnsns.2010.05.028
http://dx.doi.org/10.1016/j.cnsns.2010.05.028
http://dx.doi.org/10.1016/j.cnsns.2010.05.028
http://dx.doi.org/10.1016/j.cnsns.2010.05.028
http://dx.doi.org/10.1016/j.camwa.2008.09.013
http://dx.doi.org/10.1016/j.camwa.2008.09.013
http://dx.doi.org/10.1016/j.camwa.2008.09.013
http://dx.doi.org/10.1016/j.camwa.2008.09.013
http://dx.doi.org/10.1016/j.camwa.2008.09.013
http://dx.doi.org/10.1016/j.camwa.2008.09.013
http://dx.doi.org/10.1007/s10483-012-1576-6
http://dx.doi.org/10.1007/s10483-012-1576-6
http://dx.doi.org/10.1016/0020-7225(76)90006-9
http://dx.doi.org/10.1016/0020-7225(76)90006-9
http://dx.doi.org/10.1016/0020-7225(81)90040-9
http://dx.doi.org/10.1016/0020-7225(81)90040-9
http://dx.doi.org/10.1093/comjnl/12.3.282
http://dx.doi.org/10.1093/comjnl/12.3.282
http://dx.doi.org/10.1093/comjnl/12.3.282
http://dx.doi.org/10.1093/comjnl/12.3.282
http://dx.doi.org/10.1007/s11012-006-9014-x
http://dx.doi.org/10.1007/s11012-006-9014-x

